Завдання 595 Відношення
1) 8:5 — вісім відноситься до п'яти. Члени відношення 8 і 5;
2) 11/14  11 відноситься до 14. Члени відношення 11 і 14;
3) 0,7:10 — нуль цілих сім десятих відноситься до десяти. Члени відношення 0,17 і 10;
4) 1/12 — 1 відноситься до 12. Члени відношення 1 і 12.

 

Завдання 596 Чи правильно, що значення відношення не зміниться, якщо його члени:
1) помножити на число 2; Правильно
2) збільшити на 2; Не правильно
3) збільшити у 2 рази; Правильно
4) поділити на 3; Правильно
5) зменшити на 3; Не правильно
6) зменшити у 2 рази? Правильно
Завдання 597
Сергійко стверджує, що значенням відношення 15 : 10 є З число —, а Петрик — що число 1,5. Хто із хлопців правий? Обидва хлопці праві.

 

Завдання 598
1) 4 : 8 = 0,5 Так ; 2) 10/18 Ні  3) 14 : 7 Ні 4) 5/10 = 0,5 Так

 

Завдання 599
1) 16 : 4 = 4
2) 1,8 : 0,9 = 2
3) 2,8 : 49 = 0,057
4) 6/12 = 0,5
5) 36/63 = 0,571
6) 0,12/0,48 = 0,25
Завдання 600
1) 5 : 15 = 0,333
2) 2,5 : 0,5 = 5
3) 0,2/5 = 0,04
4) 3,4/17 = 0,2
Завдання 601, 602 Чи є взаємно оберненими відношення:
1) 5/17 і 17/5 — так
2) 14/9 і 9/14 — так
3) 8 : 11 і 11 : 8 — так
4) 3/4 і 8/6 — ні
1) 3/7 і 21/9 — ні
2) 5 : 0,2 і 2 : 0,5 — так
Завдання 603, 604 
1) 15 : 2 і 2 : 15
2) 18 : 4 і 4 : 18
3) 8,4 : 0,2 і 0,2 : 8,4
4) 0,8 : 7,2 і 7,2 : 0,8
1) 20 : 6 і 6 : 20;
2) 0,4 : 3,6 і 3,6 : 0,4
Завдання 605 
1) 4 : 9 і 9 : 4
2) 10 : З і 3 : 10
3) 2/13 і 3/12
4) 3 1/4 і 4/13
Завдання 606, 607 Одиниці вимірювання
1) 12 см : 6 см = 2
2) 0,2 м : 5 м = 0,04
3) 20 м : 5 с = 4 м/с
4) 4 км : 60 хв = 4 км/год
1) З0 дм : 5 дм = 6
2) 10 м : 2 с = 5 м/с
Завдання 608
У 6-А класі 32 учні. Із них 14 хлопців, а решта — дівчата. У скільки разів дівчат у класі більше, ніж хлопців? Яку частину учнів становлять хлопці, а яку — дівчата?

Розв’язання

1) 32  14 = 18 (д.) – дівчат у класі;

2) 18 : 14 = 18/14 = 9/7 = 1 2/7 (р.) – у стільки разів у класі більше дівчат;

3) 14/32 = 7/16 – частин класу становлять хлопці;

   18/32 = 9/16 – частин класу становлять дівчата.

Відповідь: в 1 2/7 разів, 7/16 і 9/16.

 

Завдання 609
Мотузку завдовжки 14 м розрізано на дві частини. Довжина першої частини дорівнює 8 м. У скільки разів довжина першої частини більша за довжину другої? Яку частину довжини всієї мотузки становить довжина її першої частини, а яку — довжина другої?

Розв’язання

1) 14  8 = 6 (м) – довжина другої мотузки;

2) 8 : 6 = 8/6 = 4/3 = 1 1/3 (р.) – у стільки разів довжина першої мотузки більша;

3) 8/14 = 4/7 – частин довжини всієї мотузки становить довжина першої мотузки;

   6/14 = 3/7 – частин довжини всієї мотузки становить довжина другої мотузки.

Відповідь: в 1 1/3 разів, 4/7 і 3/7.

 

Завдання 610, 611
1) 5 : 22,5 = 50/225 = 2/9
2) 1,8 : 81 = 18/810 = 1/45
3) 5/63 : 1 3/7 = 5/63 : 10/7 = 5/63 • 7/10 = 1/18
4) 5,5 : 11 1/12 = 5 5/10 : 133/12 = 55/10 : 133/12 = 11/2  12/133 = 66/133
1) 45 : 1,5 = 450 : 15 = 30
2) 3 2/3 : 1,1 = 11/3 : 1 1/10 = 11/3 : 11/10 = 11/3 • 10/11 = 10/3 = 1/3
Завдання 612, 613
1) 5 : 2,5 = 10 : 4 = 15 : 6 = 2,5
2) 0,2 : 2 = 0,4 : 4 = 2 : 20 = 0,1 
3) 10 : 30 = 2 : 6 = 4 : 12 = 1/3
4) 10 : 6 = 30 : 18 = 15 : 9 = 1 2/3
1) 2,8 : 2 = 5,6 : 4 = 1,4
2) 28 : 30 = 56 : 60 = 14/15
Завдання 614, 615
1) а : 2,5 = 5, тому а = 5 • 2,5 = 12,5
2) 3 1/3 : а = 5, тому а = 3 1/3 : 5 = 10/3 : 5 = 10/3 • 1/5 = 2/3
1) 0,8 : b = 1/5, тому b = 8/10 : 1/5 = 8/10 • 5/1 = 4
2) b : 2 3/4 = 1/5, тому b = 1/5 • 2 3/4 = 1/5 • 11/4 = 11/20
Завдання 616

Від мотузки відрізали частину завдовжки 15 м. Знайдіть довжину мотузки, якщо відношення довжини відрізаної частини до довжини всієї мотузки дорівнює 1 : 5.

Розв’язання

Довжина мотузки у 5 разів більша від довжини відрізаної частини мотузки, тому

15 • 5 = 45 (м) – довжина мотузки.

Відповідь: 45 м.

 

Завдання 617 

Два числа відносяться, як 2 : 5. На яке число треба поділити друге число, щоб отримати відношення 2 : З?

Розв’язання

Нехай шукане число дорівнює х. Складаємо рівняння.

2/(5 : х) = 2/3

5/х = 3

х = 5/3

х = 1 2/3

Відповідь: друге число треба поділити на 1 2/3.

 

Завдання 618
Ціна книжки знизилася на 1/5 її вартості. Чи можна оцінити, у скільки разів попередня ціна вища за нову?

Розв’язання

Нехай попередня ціна книжки дорівнює х, тоді нова ціна книжки х - x/5 = 4x/5, а їх відношення:

x : 4х/5 = х • 5/4х = 5х/4х = 5/4 = 1 1/4 

Відповідь: у 1 1/4 разів попередня ціна вища за нову.

 

Завдання 619
1) для приготування варення ягід і цукру треба взяти у відношенні 2 до 1;
Цукру потрібно взяти у 2 рази менше, ніж ягід  
2) сторони паркану прямокутної форми знаходяться у відношенні 1 до 3;
Довжина паркану у 3 рази більша від ширини
3) шанс перемогти у грі 50 на 50.
Шанс перемогти рівний

 

Завдання 620
Виміряйте довжину і ширину двох кімнат у своїй домівці. Знайдіть значення відношення площі однієї кімнати до площі іншої кімнати. Який висновок можна зробити за отриманим результатом?
Нехай розмір підлоги першої кімнати 3 м х 4 м , а розмір підлоги другої кімнати 4 м х 5 м. Тоді
Розв’язання
1) 3  4 = 12 (м²) - площа підлоги першої кімнати;
2) 4  5 = 20 ²) - площа підлоги другої кімнати.
3) 12 : 20 = 12/20 = 3/5
Висновок: добуток відношень відповідних розмірів підлоги в обох кімнатах дає те ж саме число 3/4  4/5 = 3/5.