Поясни за схемами, що таке швидкість зближення і швидкість віддалення.
Швидкість зближення — це відстань, на яку наближаються об'єкти за одиницю часу.
Швидкість віддалення — це відстань, на яку віддаляються об'єкти за одиницю часу.
Завдання 663
234 • 1 = 234
133 : 133 = 1
|
12323 : 1 = 12323
20 • 20 = 400
|
987 • 0 = 0
0 : 567 = 0
|
Завдання 664
4 < 48 : 12 Хибне, бо 48 : 12 = 4
125 • 2 < 300 Істинне, бо 125 • 2 = 250, а 250 < 300
175 – 29 > 145 Істинне, бо 175 – 29 = 146, а 146 > 145
200 : 2 > 10 Істинне, бо 200 : 2 =100, а 100 > 10
Завдання 665
Відстань між двома містами 528 км. Із них одночасно назустріч один одному виїхали два потяги і зустрілися через 4 год. Швидкість одного потяга — 78 км/год. З якою швидкістю рухався другий потяг?
Розв’язання
1) 528 : 4 = 132 (км/год) – швидкість зближення потягів
2) 132 – 78 = 54 (км/год)
Відповідь: швидкість другого потяга 54 км/год.
Завдання 666
Із двох міст назустріч одне одному одночасно виїхали два автомобілі і зустрілися через 3 години. Яка відстань між містами, якщо автомобілі рухалися зі швидкостями 56 км/год і 62 км/год?
|
Швидкість |
Час |
Відстань |
I |
56 км/год |
3 год |
? км |
II |
62 км/год |
Розв'язання
1) 56 + 62 = 118 (км/год) – швидкість зближення
2) 118 • 3 = 354 (км)
Відповідь: між містами 354 кілометри.
Завдання 667
З двох міст, відстань між якими 246 кілометрів, одночасно назустріч один одному виїхали два автомобілі і зустрілися через 2 години. Один автомобіль рухався зі швидкістю 57 км/год. З якою швидкістю рухався другий автомобіль?
|
Швидкість |
Час |
Відстань |
I |
57 км/год |
2 год |
246 км |
II |
? км/год |
Розв'язання
1) 246 : 2 = 123 (км/год) – швидкість зближення потягів
2) 123 – 57 = 66 (км/год)
Відповідь: швидкість другого автомобіля 66 км/год.
Завдання 668
З двох селищ одночасно назустріч один одному виїхали два мотоциклісти. Один із них рухався зі швидкістю 42 км/год, а швидкість другого — на 5 км/год більша, ніж швидкість першого. Через скільки годин вони зустрінуться, якщо відстань між селищами 267 км?
|
Швидкість |
Час |
Відстань |
I |
42 км/год |
? год |
267 км |
II |
?, на 5 км/год більша |
Розв'язання
1) 42 + 5 = 47 (км/год) – швидкість II мотоцикліста
1) 42 + 47 = 89 (км/год) – швидкість зближення мотоциклістів
2) 267 : 89 = 3 (год)
Відповідь: мотоциклісти зустрінуться через 3 години.
Завдання 669
З одного пункту у протилежних напрямках виїхали 2 велосипедисти. Знайдіть відстань між ними через 30 хв, якщо швидкість одного 125 м/хв, а другого — 150 м/хв.
|
Швидкість |
Час |
Відстань |
I |
125 м/хв |
30 хв |
? м |
II |
150 м/хв |
Розв'язання
1) 125 + 150 = 275 (м/хв) – швидкість віддалення велосипедистів
2) 275 • 30 = 8250 (м) = 8 км 250 м
Відповідь: між містами 8 км 250 м.
Завдання 670
Яку частину фігури зафарбовано? 1/2 і 1/4
КРОК 68
Завдання 671
Знайди швидкість руху птахів, якщо за 20 с кожен із них пролетів: 240 м 340 м 640 м 680 м.
Розв'язання
1) 240 : 20 = 20 (м/с)
2) 340 : 20 = 17 (м/с)
3) 640 : 20 = 32 (м/с)
4) 680 : 20 = 34 (м/с)
Завдання 672 Пригадайте, як течія річки впливає на рух на воді.
Рух за течією: швидкість течії допомагає руху.
Рух проти течії: швидкість течії заважає руху.
Завдання 673
Знайдіть швидкість катера за течією річки, якщо власна швидкість катера становить 30 км/год, а швидкість річки 4 км/год.
Короткий запис
vкатера = 30 км/год
vрічки = 4 км/год
vза течією — ?
Розв'язання
30 + 4 = 34 (км/год)
Відповідь: швидкість катера за течією річки 34 км/год.
Завдання 674
Знайдіть власну швидкість плавця, що пливе за течією річки зі швидкістю 16 км/год, якщо відомо, що швидкість річки становить 2 км/год.
Короткий запис
vза течією = 16 км/год
vрічки = 2 км/год
vплавця — ?
Розв'язання
16 – 2 = 14 (км/год)
Відповідь: власна швидкість плавця 14 км/год.
Завдання 675
Знайдіть швидкість човна за течією і проти течії річки, якщо його власна швидкість 40 км/год, а швидкість течії — 2 км/год.
Короткий запис
vчовна = 40 км/год
vтечії = 2 км/год
vза течією — ?
vпроти течії — ?
Розв'язання
1) 40 + 2 = 42 (км/год) – швидкість за течією річки
2) 40 – 2 = 38 (км/год) – швидкість проти течії річки
Відповідь: швидкість човна за течією річки 42 км/год, а проти течії річки 38 км/год.
Завдання 676
Відомо, що швидкість пароплава проти течії становить 42 км/год. Знайдіть швидкість за течією, якщо швидкість течії 5 км/год.
Короткий запис
vпроти течії = 42 км/год
vтечії = 5 км/год
vза течією — ?
Розв'язання
1) 42 + 5 = 47 (км/год) – власна швидкість пароплава
2) 47 + 5 = 52 (км/год)
Відповідь: швидкість пароплава за течією річки 52 км/год.
Завдання 677
Знайди швидкість човна проти течії, якщо швидкість за течією становить 32 км/год, а швидкість течії у 8 разів менша.
Короткий запис
vтечії = 32 км/год
vтечії — ? у 8 р. менша
vза течією — ?
Розв'язання
1) 32 : 8 = 4 (км/год) – швидкість течії річки
2) 32 – 4 = 28 (км/год) – власна швидкість човна
3) 28 – 4 = 24 (км/год)
Відповідь: швидкість човна проти течії річки 24 км/год.
Завдання 678
Власна швидкість катера 27 км/год. Швидкість течії 5 км/год. На скільки швидкість катера за течією більша за швидкість проти течії?
Короткий запис
vчовна = 27 км/год
vтечії = 5 км/год
vза течією — ?
vпроти течії — ?
На скільки більша — ?
Розв'язання
1) 27 + 5 = 32 (км/год) – швидкість за течією річки
2) 27 – 5 = 22 (км/год) – швидкість проти течії річки
3) 32 – 22 = 10 (км/год)
Відповідь: на 10 км/год швидкість човна за течією річки більша, ніж проти течії річки.
Завдання 679
Швидкість судна за течією 20 км/год, а проти течії на 6 км/год менше. Знайди власну швидкість судна та швидкість течії.
Короткий запис
vза течією = 20 км/год
vпроти течії — ?, на 6 км/год менше
vсудна — ?
vтечії — ?
Розв'язання
1) 20 – 6 = 14 (км/год) – швидкість проти течії річки
2) (20 – 14) : 2 = 3 (км/год) – швидкість течії річки
3) 20 – 3 = 17 (км/год) – власна швидкість судна
Відповідь: власна швидкість судна 17 км/год, а швидкість течії річки 17 км/год.
Завдання 680
Швидкість човна за течією 37 км/год, а проти — 35 км/год. Знайди швидкість течії річки.
Короткий запис
vза течією = 37 км/год
vпроти течії = 35 км/год
vтечії — ?
Розв'язання
(37 – 35) : 2 = 1 (км/год)
Відповідь: швидкість течії річки 1 км/год.
Завдання 681
Знайди швидкість човна у стоячій воді, якщо проти течії він пливе зі швидкістю 8 км/год, а швидкість течії 3 км/год. Яку відстань пройде човен за 3 години за течією?
Короткий запис
vпроти течії = 8 км/год
vтечії = 3 км/год
vчовна — ?
За 3 год — ? км
Розв'язання
1) 8 + 3 = 11 (км/год) – швидкість човна
2) 11 + 3 = 14 (км/год) – швидкість за течією річки
3) 14 • 3 = 42 (км)
Відповідь: за течією річки човен пройде 42 км за 3 години.
Завдання 682
Проти течії катер пройшов за 6 год 144 км, а за течією — 104 км за 4 год. Знайди власну швидкість катера?
Короткий запис
Проти течії — за 6 год — 144 км
Проти течії — за 4 год — 104 км
v катера — ?
Розв'язання
1) 144 : 6 = 24 (км/год) – швидкість проти течії річки
2) 104 : 4 = 26 (км/год) – швидкість за течією річки
3) (24 + 26) : 2 = 25 (км/год)
Відповідь: власна швидкість катера 25 км/год.
Завдання 683
У Діанки є три вазони з квітами. Скільки є способів їх розставити на підвіконні?
Розв'язання
Нехай 1 — це перший вазон, 2 — це другий вазон, 3 — це третій вазон, тоді маємо:
123, 132, 213,231, 312, 321.
Відповідь: шість способів.
Завдання 684 Рівняння
(1028 – х) + 1009 = 2001
(1028 – х) = 2001 – 1009
(1028 – х) = 992
х = 1028 – 992
х = 36
|
(х + 18) – 348 = 126
(х + 18) = 126 + 348
(х + 18) = 474
х = 474 – 18
х = 456
|
||
_ 2001
1009
992
|
_ 1028
992
36
|
+ 126
348
474
|
_ 474
18
456
|
19 • (128 – х) = 2052
128 – х = 2052 : 19
128 – х = 108
х = 128 – 108
х = 20
|
(х – 9) • 48 = 5136
х – 9 = 5136 : 48
х – 9 = 107
х = 107 + 9
х = 116
|
||
_2052 | 19 19 108 _152 152 0 |
_ 128
108
20
|
_5136 | 48 48 107 _336 336 0 |
+ 107
9
116
|