Інші завдання дивись тут...

Завдання 199  Порядок дій

a – b : c + c • d                               3, 1, 4, 2

(a • b) : c – (d : k) • m                     1, 2, 5, 3, 4

102 : 2 + 34 • 5 – 130 : 5                 1, 4, 2, 5, 3

730 : 10 – 84 : 4 + 800 : 20              1, 4, 2, 5, 3

 

Завдання 200

Числа, які діляться на 2 без остачі (таблиця ділення на число 2): 

26, 40, 104, 328, 702, 430.

Числа, які діляться на 5 без остачі (таблиця ділення на число 5): 40, 225, 430

Числа, які діляться на 10 без остачі: 40, 430

 

Завдання 201 Господарі зібрали з присадибної ділянки 43 кг моркви. На зиму моркву розфасу­вали в ящики, по 5 кг у кожний. Скіль­ки ящиків для цього знадобилося? Чи всі ящики були наповнені дощенту?

Розв’язання

43 : 5 = 8 (ост. 3)

Відповідь: для цього знадобилося 9 ящиків, один ящик не був наповнений дощенту.

 

Завдання 202  Ділення з остачею

22 : 3 = 6 (ост. 4)

22 кружечки ділили.

Ділили на 3 рівні частини, по 6 кружечків у кожній.

Ще 4 кружечки залишилося.

 

Завдання 203

24 : 5 = 4 (ост. 4)

74 : 8 = 9 (ост. 2)

99 : 2 = 49 (ост. 1)

4 • 5 + 4 = 24

9 • 8 + 2 = 74

49 • 2 + 1 = 99

25 : 4 = 6 (ост. 1)

74 : 9 = 8 (ост. 2)

99 : 4 = 24 (ост. 3)

6 • 4 + 1 = 25

8 • 9 + 2 = 74

24 • 4 + 3 = 99

Завдання 204  Урожай груш з домашнього саду розклали в 7 ящиків, по 12 кг у кожний, і ще за­лишилося 9 кг груш. Скільки кілограмів груш було зібрано?

Розв’язання

1) 12 • 7 = 84 (кг) – груш у ящиках.

2) 84 + 9 = 93 (кг)

Відповідь: зібрано 93 кілограми груш.

 

Завдання 205

3 чотирикутники: OPRS, XYZT, AMOR.   Прямокутники: XYZT, AMOR

Прямокутник, у якого всі сторони рівні: квадрата зі стороною 2 см.

Прямокутник, у якого одна сторона більша за суміжну на 2 см: прямокутник довжиною 4 см і шириною 2 см.

Завдання 206 Із клаптиків кольорового паперу діти склали килимок для лялькового театру.

1) Скільки клаптиків використано? 107

2) Скільки клаптиків трикутної, квадратної, прямокутної форми? 65, 16, 26

3) Які клаптики можна поділити на частини, щоб збільши­ти на 2 число клаптиків трикутної форми? Квадрат

4) Які клаптики–фігури мають хоча б один прямий кут? Прямокутні трикутники

 

Завдання 207 Протягом трьох днів виставку художніх робіт відвідало 960 осіб. Першого дня було 315 відвідувачів, другого дня на 45 осіб більше, ніж першого. Скільки осіб відвідало ви­ставку третього дня?

Розв’язання

1) 315 + 45 = 360 (ос.) – відвідало другого дня.

2) 315 + 360 = 675 (ос.) – відвідало за перших два дні.

3) 960 – 675 = 285 (ос.)

Відповідь: третього дня виставку відвідало 285 осіб.

 

Завдання 208

1) Чотирикутник АВСD є прямокутником.

2) Вершини та прямі кути фігури.

3) Визначення прямокутника.

4) Прямокутник має 4 сторони, 4 кути, 4 вершини.

5) Рівні сторони: AB = DC, BC = AD

6) Периметр прямокутника.

 

Завдання 209  Усі трицифрові числа, які можна скласти, використовуючи такі слова: двісті, сорок, шістдесят, три, п'ять, вісім: 243, 245, 248, 263, 265, 268.

 

Перевір себе

Завдання 210  Числа, більші від 150, але менші від 200, які ді­ляться без остачі на 5: 155, 160, 165, 170, 175, 180, 185, 190, 195

 

Завдання 211  У порядку зростання всі трицифрові числа, вико­ристовуючи цифри 3, 4, 7 (цифри в кожному числі не повто­рюються): 347, 374, 437, 473, 734, 743

 

Завдання 212

Сума добутків чисел 170 і 3 та 225 і 2:  170 • 3 + 225 • 2 = 510 + 450 = 960

 

Завдання 213

25 : 6 = 4 (ост. 1)

76 : 5 = 15 (ост. 1)

87 : 4 = 12 (ост. 3)

73 : 10 = 7 (ост. 3)

Завдання 214

а) П'ять однакових наборів фломастерів коштують 300 грн. Скільки коштують 10 таких наборів фломастерів?

Розв’язання

1 спосіб

300 : 5 • 10 = 60 • 10 = 600 (грн) – вартість 10 таких наборів.

2 спосіб

300 • (10 : 5) = 300 • 2 = 600 (грн) – вартість 10 таких наборів.

Відповідь: 10 таких наборів коштують 600 гривень.

 

б) За 180 грн купили 6 однакових наборів фломастерів. Скільки таких наборів можна купити за 210 грн?

Розв’язання

210 : (180 : 6) = 7 (н.) – наборів можна купити.

Відповідь: можна купити 7 таких наборів.

 

Завдання 215  Великий набір фломастерів коштує a грн, а малий — у b ра­зів дешевший. Скільки коштують с малих наборів?

Вираз  (а : b) • с 

Якщо a = 36, b = 4, с = 10, тоді а : b • с = 36 : 4 • 10 = 90 (грн)

 

Завдання 216

(a – b : c + d) • k дії: 2, 1, 3, 4        a • b – b • c + c • a дії: 1, 4, 2, 5, 3

Якщо a = 130, b = 120, c = 4, d = 200, k = 2, тоді

(a – b : c + d) • k = (130 – 120 : 4 + 200)  2 = (130 – 30 + 200)  2 = 600

Якщо a = 30, b = 20, c = 15, тоді  

a • b – b • c + c • a = 30 • 20 – 20 • 15 + 15 • 30 = 600 – 300 + 450 = 750

 

Завдання 217

Обчислення

Перевірка

+586

  275

  861

+356

  299

  655

_646

  385

  261

_520

  325

  195

_861

  586

  275

_861

 275

 586

_655

 299

 356

_655

  356

  229

+261

  385

  646

_646

 261

 385

+195

   325

   520

_520

 195

 325

Завдання 218 

1) Одиниці довжини: 1 мм, 1 см, 1 дм, 1 м

2) Одиниці маси: 1 г, 1 кг, 1 ц, 1 т

3) Одиниці часу: 1 с, 1 хв, 1 год, 1 доба, 1 тиждень, 1 рік

4) Одиниці вартості: 1 к., 1 грн

 

Завдання 219 Одиниці вимірювання

5 м 40 см = 540 см

5 ц 20 кг = 520 кг

7 дм 3 см = 73 см

2 год 30 хв = 150 хв

342 см = 3 м 42 см

219 кг = 2 ц 19 кг

41 см = 4 дм 1 см

185 хв = 3 год 5 хв

Завдання 220

40 км + 265 км = 305 км

250 кг + 74 кг = 324 км

13 год + 10 год = 23 год

173 м – 56 м = 117 м

346 т – 60 т = 286 т

25 хв – 17 хв = 8 хв

25 км • 2 = 50 км

52 кг • 4 = (50 кг + 2 кг) • 4 = 208 кг

5 год • 6 = 30 год

18 м : 3 = 6 м

24 т : 8 = 3 т

60 хв : 2 = 30 хв

Завдання 221 Дії з іменованими числами

2 дм 5 см + 7 дм 2 см = 9 дм 7 см

5 м 45 см + 3 м 55 см = 9 м

40 м • 2 = 80 м         20 см • 2 = 40 см

3 год • 3 = 9 год       10 хв • 3 = 30 хв

10 год 40 хв – 5 год 25 хв = 5 год 15 хв

45 т 2 ц – 13 т = 32 т 2 ц

80 т : 4 = 20 т          8 т 4 ц : 4 = 2 т 1 ц

35 грн : 5 = 7 грн     5 грн 10 коп. : 5 = 1 грн 2 коп.

Завдання 222

а) Полічили сотнями до 1000 в прямому і зворотному напрямках:

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

1000, 900, 800, 700, 600, 500, 400, 300, 200, 100

б) Числа, які більші за 110 і менші від 126: 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125Їх 15.

в) Розв'язки нерівності 110 < a < 126 знайдемо: 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125

 

Завдання 223

а) Усього квадратів можна виділити на кожному рисунку: 

На І малюнку 14 (кв.)     На ІІ малюнку 30 (кв.)

б) Квадратна дошка розділена на квадрати двох кольорів. Чи можна цю дошку розрізати на прямокутники, що склада­ються з двох квадратиків різ­них кольорів? Ні.   

Інші завдання дивись тут...