Інші завдання дивись тут...

АРИФМЕТИЧНА ДІЯ. МНОЖЕННЯ НАТУРАЛЬНИХ ЧИСЕЛ.

Помножити число а на число b означає — взяти число а доданком b разів, якщо b > 1.

а • b = а + а + а 

          ________

         b доданків

 

Множник • Множник = Добуток

Числа, які множимо, називають множниками, результат дії множення – добуток. 

Добуток розглядають як додавання однакових доданків. Помножити натуральне число 4 на натуральне число 3 – означає знайти суму трьох доданків, кожний з яких дорівнює 4.

4 • 3 = 4 + 4 + 4 = 12  

Читають «чотири помножити на три – буде дванадцять» або «по чотири взяти три рази – буде дванадцять».

 

У результаті дії множення для натуральних чисел завжди отримаємо більше число.

Таблиця множення (добутки одноцифрових чисел утворюють таблицю множення, яку треба знати напам'ять).

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

 

Переставний закон множення – від перестановки множників добуток не змінюється.

а • b = b • а

3 • 4 = 4 • 3 = 12

 

Сполучний закон множення – числа можна множити у будь-якому порядку (щоб добуток двох чисел помножити на третє число, можна перше число помножити на добуток другого і третього чисел). Тому такий вираз записують без дужок.

(а • b) • с = а • (b • с) = а • b • с

(8 • 5) • 2 = 8 • (5 • 2) = 8 • 10 = 80

 

Розподільний закон множення стосовно додавання – добуток суми двох чисел на третє число дорівнює сумі  добутків кожного доданка на третє число. Щоб помножити суму на число, можна помножити кожний із доданків на це число і отримані добутки додати.

(а + b) • с = а • b + b • с

(8 + 5) • 2 = 8 • 2 + 5 • 2 = 16 + 10 = 26

Розподільний закон множення стосовно віднімання – добуток різниці двох чисел на третє число дорівнює різниці добутків зменшуваного і від'ємника окремо на третє число. Щоб помножити різницю на число, можна помножити зменшуване і від'ємник окремо на це число, а потім від першого добутку відняти другий.

(а – b) • с = а • b – b • с

(8 – 5) • 2 = 8 • 2 – 5 • 2 = 16 – 10 = 6

 

Особливі випадки додавання.

а • 0 = 0

0 • а = 0

Добуток дорівнює 0, якщо один із множників дорівнює 0
0 • 0 = 0  

1 • а = а

а • 1 = а

Добуток дорівнює другому множнику, якщо один із множників дорівнює 1
1 • 1 = 1   

 

Множення на 10, 100, 1000, …

При множенні числа на десять достатньо до цього числа дописати один нуль.

5 • 10 = 50

При множенні числа на сто достатньо до цього числа дописати два нулі.

5 • 100 = 500

При множенні числа на тисячу достатньо до цього числа дописати три нулі.

5 • 1 000 = 5 000 

Щоб помножити число на розрядну одиницю, достатньо дописати до цього числа СТІЛЬКИ нулів, СКІЛЬКИ їх міститься у другому множнику.

 

Множення перевіряємо дією ділення.

8 • 2 = 16

Перевірка:

16 : 8 = 2

16 : 2 = 8

 

Правило знаходження невідомого множника.

Щоб знайти невідомий множник, треба добуток поділити на відомий множник.

х • 2 = 8 Знаходження невідомого множника

х = 8 : 2 

х = 4

4 • 2 = 8

 

Прийоми множення.

40 • 30 = 1200

4 дес. • 3 дес. = 12 дес.

45 • 3 = (40 + 5) • 3 = (40 • 3) + (5 • 3) = 120 + 15 = 135

Множення числа на суму

3 • (4 + 2) = 3 • 6 = 18

с • (а  + b)      Обчислити суму і отриманий результат помножити  на число

3 • (4 + 2) = 3 • 4 + 3 • 2 = 12 + 6 = 18

с • (а + b) = с • а + с • b Помножити число на кожний доданок і отримані результати додати. Розподільний закон множення стосовно додавання.
Множення суми на число

(4 + 2) • 3 = 6 • 3 = 18

(а + b) • с Обчислити суму і отриманий результат помножити  на число 

(4 + 2) • 3 = 4 • 3 + 2 • 3 = 12 + 6 = 18

(а + b) • с = а • с + b • с Помножити кожний доданок на число і отримані результати додати. Розподільний закон множення стосовно додавання.
Множення числа на різницю

3 • (4 – 2) = 3 • 2 = 6

с • (а – b) Обчислити різницю і отриманий результат помножити  на число 

3 • (4 – 2) = 3 • 4 – 3 • 2 = 12 – 6 = 6

с • (а – b) = с • а – с • b Помножити число на зменшуване, помножити число на від'ємник, отримані результати відняти. Розподільний закон множення стосовно віднімання.
Множення різниці на число

(4 – 2) • 3 = 2 • 3 = 6

(а – b) • с  Обчислити різницю і отриманий результат помножити  на число. 

(4 – 2) • 3 = 4 • 3 – 2 • 3 = 12 – 6 = 6

(а – b) • с = а • с – b • с Помножити число на зменшуване, помножити число на від'ємник, отримані результати відняти. Розподільний закон множення стосовно віднімання.

Множення числа на добуток 

2 • (3 • 5) = 2 • 15 = 30

с • (а • b) множити число на добуток можна, перемноживши числа в будь-якому порядку

2 • (3 • 5) = (2 • 3) • 5 = 6 • 5 = 30

с • (а • b) = (с • а) • b

2 • (3 • 5) = (2 • 5) • 3 = 10 • 3 = 30

с • (а • b) = (с • b) • а 

Множення добутку на число 

(3 • 5) • 2 = 15 • 2 = 30

(а • b) • с множити добуток на число можна, перемноживши числа в будь-якому порядку
(3 • 5) • 2 = (3 • 2) • 5 = 6 • 5 = 30 (а • b) • с =  (а • с) • b
(3 • 5) • 2 = (5 • 2) • 3 = 10 • 3 = 30 (а • b) • с = (b • с) • а
Знаходження добутку на двоцифрове число
32 • 36 = 32 • (З0 + 6) = 32 • З0 + 32 • 6 = = 960 + 192 = 1152 перший множник помножити окремо на десятки й одиниці, а результати додати

 

Якщо один із множників збільшити (зменшити) в кілька разів, а інший множник залишити без змін, то їхній добуток збільшиться (зменшиться) у стільки ж разів.

Інші завдання дивись тут...